Exercise 47

Find the absolute maximum and absolute minimum values of f on the given interval.

$$
f(x)=12+4 x-x^{2}, \quad[0,5]
$$

Solution

Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(12+4 x-x^{2}\right) \\
& =12(0)+4(1)-2 x \\
& =4-2 x
\end{aligned}
$$

Set $f^{\prime}(x)=0$ and solve for x.

$$
\begin{gathered}
4-2 x=0 \\
2 x=4 \\
x=2
\end{gathered}
$$

This value of x is within $[0,5]$, so evaluate f here.

$$
f(2)=12+4(2)-(2)^{2}=16 \quad \text { (absolute maximum) }
$$

Now evaluate the function at the endpoints of the interval.

$$
\begin{aligned}
& f(0)=12+4(0)-(0)^{2}=12 \\
& f(5)=12+4(5)-(5)^{2}=7 \quad \text { (absolute minimum) }
\end{aligned}
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $[0,5]$.

The graph of the function below illustrates these results.

